Abstract:

JFE S ee ha de(e, ed a d c)e, cia i ed a e PET-a i a ed i f ee ee (TFS) hee f f d ca , UNIVERSAL BRITE T, eF, hich ai ed he, e, f, a ce, e i, e e f, f d ca a d i a e (ie -f, ie d . A fea e, UNIVERSAL BRITE $T_{\ell} e F ha a exce e ba a ce f high f_{\ell} abi i a d$ $he\ c\ e\ e\ e\ e\ a\ e\ ,\ e\ ,\ hich\ i\ e\ i\ e\ i\ f\ d$ ca iga, icai . A exce e c e eeae, , e a ea i ed b addi g igi a face- dif i g addi ií e he, eh ee e e h ha a e (PET) ed ce he face fee e e g f he PET . F _ abii i a ed i, ledba, igac biai f a e h , e PET (h -PET) ih a ie, c, eada, igi a a i ai gech g hich i hibi PET c, a i a i .

1. Introduction

From the ie point of protecting the global en ironment and improting the labor en ironment d ring painting ork, in recent ears, the can-making ind str has a oided the set of organic sollents in painting, either b concetting to a er soll ble lacq er or adoping thermoplastic resin laminated relms as an substitute for paint. Against this background, cans produced from steel sheets laminated it h a polit the lene terephthalate (PET) relm ha e alread been commercialitied in the reld of be erage cans¹). As and an ages of relmlaminated steel sheets, beca se the painting/baking process required it h concentional painted materials can be omitted, (1) costs are rediced bill eliminating this

 o_t breaking or cracking. Al ho gh i is possible to prod ce dra -redra (DRD) food cans sing copol mer PET-lamina ed s eel shee s^{2} , t he high cos of the \mathfrak{slm} (d $e_t o_t$ he high $\cos_t of_t$ he copol mer componen) as a problem. Applica ion of ine pensi e homopol mer PET (homo-PET) «lm-lamina ed ş eel sheets is desirable as a sol t ion t o t his problem, b tbeca se homo-PET «lms ha e an remarkabl high cr s alli a ion kine ic in comparison i h copol mer PET «lms³), rapid cr s al gro t h occ rs d ring canmaking d $e_t o_t$ he s ress and heap generated b the bending and dra ing processes. As a res $\frac{1}{t}$, this ma erial is nable to follo forming and co ld no be applied in can-making. JFE S eel t herefore carried o_t an in eş iga ion foc sing on t echniq es for inhibi ing cr s alli a ion of the PET flm, and s died application of a net the pe of homo-PET $rm^{4)}$ in hich cr s alli a ion beha ior is inhibi ed b red cing the mobilit of the PET molec les. As a distincti e fea re of this techniq e, the molec lar sr c re of the PET is controlled so that some amorpho s molec les form a q asi-bridge str q re, t hereb red cing_t heir mobilit .

(3) Int he e t ernal appearance of food cans, a colort one (me allic color, e c.) i h a rich l s er is req ired. For t his reason, i is necessar to impar an appearance i h a me allic color to lamina ed seel shees for food cans b adding a colorant to the selm. Ho e er, if heat rea men s ch as reot series i primed, the colorant ends to lose i s color d e to migra ion/segrega ion to the selm s rface, de eriora ing the design propert. Therefore, a t echniq e for inhibiting this phenomenon of heat-ind ced migra ion of the colorant as s died.

3. Experimental Method

3.1 Specimens

The s bs rate sed for \mathcal{A} Im lamination as a_t in free speel (TFS) of lo carbon al min m-killed contino sl cas speel (Temper degree: T3CA, Thickness: 0.24 mm)

i h a me allic chrome coa ing eigh of 120 mg/m^2 and chrome h dra e o ide coa ing eigh of 15 mg/m^2 (as Cr con en). S rface free energ as adj s ed b lamina ing a ne t pe of bia iall -orien ed homo-PET «Im (Thickness: 15μ m), to hich. ario st pes of s rfacemodif ing addi i es had been added, t o t he s rface of mofas e ho03 T (na 88 (TFS) appearaT*0.2is con rol)1mo-20.sho as sed as the BO. al e. Here, X-ra diffraçion meas rements ere performed b C K α at at be of age of 40 kV and c rrent of 100 mA, sing a RINT2400V de ice man faç red b Rigak Corp. In this paper, a . al e BO/BO₀, hich as obtained b standardi ing the BO. al e after lamination bt the BO. al e before lamination (BO₀), as sed as bia ial orient at ion.

4. Experimental Results

4.1 Results of Study of Content Release Property

The res $\frac{1}{5}$ s of an in equip ion of the effect of s rface free energ on the content release proper are shon in **Fig. 2**. A clear relationship can be obserfed, in hich the content release proper improves as s rface free energ decreases.

The s rface free energ of the specimens as adj sed b adding s rface-modif ing addit is to the PET rlm. Therefore, the effect of each of the s rfacemodif ing addit is as in estigated. **Table 2** sho s the s rface-modif ing addit is sed here. Addit is A is silicone and is non-polar. Addi i e B is a fa_{tt} acid ester hich has polari in the carbon l part, as ell as a non-polar part in the h drocarbon chain. Addi i e C is a ege able a . Like Addi i e B, i consists mainl of a fa_{tt} acid ester, b t d et ot he large carbon n mber of the h drocarbon chain, the non-polar part forms the main str c re of Addi i e C.

The effects of these s rface-modif ing add i is are sho n in **Fig. 3**. From these res \downarrow s, \downarrow can be nders odd

