Abstract:

 a_r , r, a, a, r a_r , 785 Ba a., a, ,,,,,,,,, r, b_{rr} , a, ba a a a a , a *a* . , , a, a ..., r \boldsymbol{a} a, a, a,b ,, ,r ri, baaaaa arra barr-a b, r , brrr a_{r} r rr A r rr rr rr

1. I **₄**,d c

 r b

50 %, ხ□ **5**0 **b**□ **b**_ **b b** r b⊡r r b⊡r b⊡ r **5**□ **5**□ ხ□ ხ□ ŕ ხ□ **b**_ **b**□

2. O e f Tec

b

i b

2.1 S d fO C e ca C

r b🗆

b□

2.1.1 A -₄, ed e e ₄, e₄, e

Table 1 The chemical composition of steel examined

				(%)
		. 1		í	
				,	— П
•				, ,	

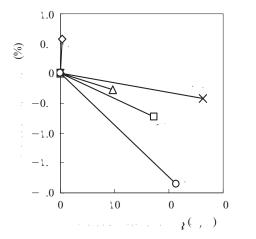
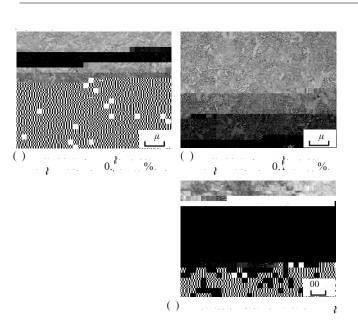
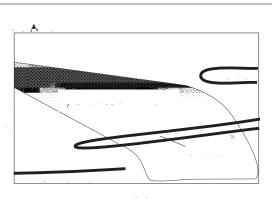



Fig. 1 Tensile property change with the addition of 0.1 mass% alloy elements

2.1.2 Te e ◀ e ← e af e ← e d

F.3.

50 i 50 i i


2.2 C **4**, ed C

r b□

ხ□

,ხ□

b🗆

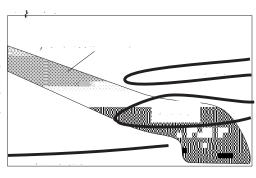


Fig. 5 Continuous cooling transformation diagrams of steels with or without Mo adding

b🗆

 $b\Box$

; b□;

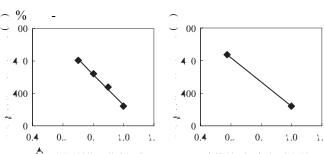


Fig. 4 Effect of cooling time and velocity of blast air on the finish cooling temperature

2.3 De e e f 4-R b S ea Re f e e

E ce e Ba a ce f

C c e B d S a a d

Be d D c

4. C c

1 11

3.2 E a e f A ca

P 3 ıbΩ **b**_ r 50 **5**0 ıbΩ r b🗆 r b🗆 í b🗆 **b**_ *i* **5**□ **b**_ bD i **b b**_ **b**_ b□

b□ .